Перевод: с немецкого на все языки

со всех языков на немецкий

(на подстанции)

  • 1 Querdifferentialschutz, m

    1. поперечная дифференциальная защита

     

    поперечная дифференциальная защита
    Защита, применяемая для цепей, соединенных параллельно, срабатывание которой зависит от несбалансированного распределения токов между ними.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    EN

    transverse differential protection
    protection applied to parallel connected circuits and in which operation depends on unbalanced distribution of currents between them.
    [IEV ref 448-14-17]

    FR

    protection différentielle transversale
    protection pour circuits en parallèle, dont le fonctionnement dépend du déséquilibre des courants entre ces circuits
    [IEV ref 448-14-17]


    Поперечная дифференциальная токовая направленная защита линий

    Защита применяется на параллельных линиях, имеющих одинаковое сопротивление и включенных на одну рабочую систему шин или на разные системы шин при включенном шиносоединительном выключателе. Для ее выполнения вторичные обмотки трансформаторов тока ТА защищаемых линий соединяются между собой разноименными зажимами (рис. 7.21). Параллельно вторичным обмоткам трансформаторов тока включаются токовый орган ТО и токовые обмотки органа направления мощности OHM.

    5316
    Рис. 7.20. Упрощенная схема контроля исправности соединительных проводов дифференциальной токовой защиты линии

    Токовый орган в схеме выполняет функцию пускового органа ПО, а орган направления мощности OHM служит для определения поврежденной линии. В зависимости от того, какая линия повреждена, OHM замыкает левый или правый контакт и подает импульс на отключение выключателя Q1 или Q2 соответственно.
    Напряжение к OHM подводится от трансформаторов напряжения той системы шин, на которую включены параллельные линии.
    Для двухстороннего отключения поврежденной линии с обеих сторон защищаемых цепей устанавливаются одинаковые комплекты защит.
    Рассмотрим работу защиты, предположив для простоты, что параллельные линии имеют одностороннее питание.
    При нормальном режиме работы и внешнем КЗ (точка К1 на рис. 7.22, а) вторичные токи I 1 и I 2 равны по значению и совпадают по фазе. Благодаря указанному выше соединению вторичных обмоток трансформаторов тока токи в обмотке ТО I p на подстанциях 1 и 2 близки к нулю и защиты не приходят в действие.

    5317
    Рис. 7.21. Принципиальная схема поперечной токовой направленной защиты двух параллельных линий

    При КЗ на одной из защищаемых линий (например, на линии в точке К2 на рис. 7.22, б) токи I 1 и I 2 не равны (I 1>I 2). На подстанции 1 ток в ТО I р=I 1-I 2>0, а на подстанции 2 I р=2I 2. Если I р>I сз, пусковые органы защит сработают и подведут оперативный ток к органам направления мощности, которые выявят поврежденную цепь и замкнут контакты на ее отключение.
    При повреждении на линии вблизи шин подстанции (например, в точке КЗ на рис. 7.22, в) токи КЗ в параллельных линиях со стороны питания близки по значению и совпадают по фазе. В этом случае разница вторичных токов незначительна и может оказаться, что на подстанции 1 ток в ТО I р<I сз и защита не придет в действие. Однако имеются все условия для срабатывания защиты на подстанции 2, где I р=2I 1. После отключения выключателя поврежденной цепи на подстанции 2 ток в защите на подстанции 1 резко возрастет, и защита подействует на отключение выключателя линии W2. Такое поочередное действие защит называют каскадным, а зона, в которой I р<I сз, - зоной каскадного действия.
    В случае двухстороннего питания параллельных линий защиты будут действовать аналогичным образом, отключая только повредившуюся цепь.
    К недостаткам следует отнести наличие у защиты так называемой "мертвой" зоны по напряжению, когда при КЗ на линии у шин подстанции напряжение, подводимое к органу направления мощности, близко к нулю и защита отказывает в действии. Протяженность мертвой зоны невелика, и отказы защит в действии по этой причине крайне редки.
    В эксплуатации отмечены случаи излишнего срабатывания защиты. При обрыве провода с односторонним КЗ на землю (рис. 7.23) защита излишне отключала выключатель Q2 исправной линии, поскольку мощность КЗ в ней была направлена от шин, а в поврежденной линии ток отсутствовал.
    Отметим характерные особенности защиты. На рис. 7.21 оперативный ток к защите подводится через два вспомогательных последовательно включенных контакта выключателей Q1 и Q2. Эти вспомогательные контакты при отключении любого выключателя (Q1 или Q2) автоматически разрывают цепь оперативного тока и выводят защиту из работы для предотвращения неправильного ее действия в следующих случаях:
    - при КЗ на линии, например W1, и отключении выключателя Q1 раньше Q3 (в промежуток времени между отключения ми обоих выключателей линии W1 на подстанции 1 создадутся условия для отключения неповрежденной линии W2);
    - в нормальном режиме работы при плановом отключении выключателей одной из линий защита превратится в максимальную токовую направленную защиту мгновенного действия и может неправильно отключить выключатель другой линии при внешнем КЗ.
    Подчеркнем в связи со сказанным, что перед плановым отключением одной из параллельных линий (например, со стороны подстанции 2) предварительно следует отключить защиту накладками SX1 и SX2 на подстанции 1, так как при включенном положении выключателей на подстанции 1 защита на этой подстанции автоматически из работы не выводится и при внешнем КЗ отключит выключатель линии, находящейся под нагрузкой.
    Когда одна из параллельных линий находится под нагрузкой, а другая опробуется напряжением (или включена под напряжение), накладки на защите должны находиться в положении "Отключение" - на линии, опробуемой напряжением, "Сигнал" - на линии, находящейся под нагрузкой. При таком положении накладок защита подействует на отключение опробуемой напряжением линии, если в момент подачи напряжения на ней возникнет КЗ.

    5318
    Рис. 7.22. Распределение тока в схемах поперечных токовых направленных защит при КЗ:
    а - во внешней сети; б - в зоне действия защиты; в - в зоне каскадного действия; КД - зона каскадного действия
    5319
    Рис. 7.23. Срабатывание защиты при обрыве провода линии с односторонним КЗ на землю

    При обслуживании защит необходимо проверять исправность цепей напряжения, подключенных к OHM, так как в случае их обрыва к зажимам OHM будет подведено искаженное по фазе и значению напряжение, вследствие чего он может неправильно сработать при КЗ. Если быстро восстановить нормальное питание OHM не удастся, защиту необходимо вывести из работы.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-6.html]

    Тематики

    EN

    DE

    • Querdifferentialschutz, m

    FR

    Немецко-русский словарь нормативно-технической терминологии > Querdifferentialschutz, m

  • 2 Féld

    1. ячейка подстанции (распределительного устройства)
    2. ячейка (электрической) подстанции
    3. пролет оболочки
    4. конверт (в строительстве)

     

    конверт
    Дощатая замкнутая прямоугольная рама с диагональными перекрёстными раскосами, служащая опорой в инвентарных подмостях
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    • строит. машины, оборуд., инструмент прочие

    EN

    DE

    FR

     

    пролет оболочки
    Один из характерных размеров оболочки в плане (в своде-оболочке расстояние между опорными краями по образующей; в оболочках вращения — по диаметру опорного края).
    [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    Тематики

    • строительная механика, сопротивление материалов

    EN

    DE

    FR

     

    ячейка подстанции
    Часть электрической подстанции, содержащая всю или часть коммутационной и/или иной аппаратуры одного присоединения.
    [ ГОСТ 24291-90]

    ячейка (ПС, РУ)
    Часть ПС (РУ), содержащая всю или часть коммутационной и (или) иной аппаратуры одного присоединения
    [ http://energy-ua.com/elektricheskie-p/klassifikatsiya.html]

    Тематики

    Синонимы

    EN

    DE

    FR

    • cellule d`un poste travee

    35 ячейка (электрической) подстанции [распределительного устройства]

    Часть (электрической) подстанции [распределительного устройства], содержащая всю или часть коммутационной и/или иной аппаратуры одного присоединения

    605-02-09

    de Feld

    en bay (of a substation)

    fr cellule (dun poste) travee, champ (B-CH)

    Источник: ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Féld

  • 3 Verdrahtung

    1. вторичные цепи электростанции (подстанции)
    2. вторичные цепи электростанции

     

    вторичные цепи электростанции (подстанции)
    Совокупность кабелей и проводов, соединяющих устройства управления, автоматики, сигнализации, защиты и измерения электростанции (подстанции).
    [ ГОСТ 24291-90]

    EN

    wiring (secondary wiring)
    all the wires and connections necessary to connect together and to supply all the separate protection, control and monitoring components within a substation
    [IEV number 605-03-07]

    FR

    filerie
    ensemble des conducteurs et de leurs connexions nécessaires pour raccorder entre eux et alimenter les différents éléments de protection, de conduite et de surveillance dans un poste
    [IEV number 605-03-07]

    Вторичные цепи электростанции (вторичные цепи) – совокупность кабелей, проводов и зажимов, с помощью которых соединяют устройства управления, автоматики, сигнализации, защиты и измерения электростанции (подстанции) во вторичную систему электростанции.
    В технической литературе часто использует синоним этого термина – вторичная коммутация, что не совсем удачно, так как термин коммутация, представляющий собой имя действия, используется для обозначения различных процессов переключения электрических цепей. См. например, коммутация электрических машин постоянного тока.

    Цепи, по которым передаётся электрическая энергия, называют первичными цепями.

    Для В.ц. в большинстве случаев используют источники оперативного питания напряжением 220 В (постоянного, переменного или выпрямленного тока) или 110 В (постоянного тока).
    На практике различают В.ц.:
    - постоянного тока;
    - переменного тока;
    - трансформаторов тока;
    - трансформаторов напряжения;
    К В.ц. относят также шинки различного назначения.

    Для различения В.ц. и их участков друг от друга используются специальные обозначения, выполняемые на электрических схемах и на концах проводников.
    Обозначения В.ц. постоянного тока выполняется с учетом полярности цепей (для участков цепей положительной полярности используются нечетные числа, а для цепей отрицательной полярности - четные числа).

    В.ц. переменного тока обозначаются последовательными числами без деления на чётные и нечётные. Допускается перед числовым обозначением цепи указывать буквенное обозначение фазы – А, В или С или нейтрали N.

    Лит.:
    1. Беляев А.В. Вторичная коммутация в распределительных устройствах, оснащенных цифровыми РЗА. (часть1). М.: НТФ «Энергопрогресс», 2006. 56 с.
    [Библиотечка электротехника, приложение к журналу «Энергетик», вып. 2 (86)].
    2. Беляев А.В. Вторичная коммутация в распределительных устройствах, оснащенных цифровыми РЗА. (часть2). М.: НТФ «Энергопрогресс», 2006. 64 с.
    [Библиотечка электротехника, приложение к журналу «Энергетик», вып. 3
    (87)].
    3. Голубев М.Л. Вторичные цепи на подстанциях с переменным оперативным током. М.:Энергия, 1977
    4. Камнев В.Н. Монтаж и обслуживание вторичной коммутации. М.: Высшая школа, 1969, 3-е изд.
    5 Лезнов С.И., Фаерман А.Л. Устройство и обслуживание вторичных цепей электроустановок. М.:Энергия, 1979.
    6 Обозначение вторичных цепей. Руководящий материал 10260тм-Т1. М.:Энергосетьпроект, 1981
    7. Электрическая часть электростанции и электрической сети. Термины и определения. ГОСТ 24291-90. М. Издательство стандартов, 1991
    [ http://maximarsenev.narod.ru/linksAD.html]

    Тематики

    EN

    DE

    FR

    18 вторичные цепи электростанции [подстанции]

    Совокупность кабелей и проводов, соединяющих устройства управления, автоматики, сигнализации, защиты и измерения электростанции [подстанции]

    605-03-07

    de Verdrahtung

    en secondary wiring

    fr filerie

    Источник: ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Verdrahtung

  • 4 Längsdifferentialschutz, m

    1. продольная дифференциальная защита

     

    продольная дифференциальная защита
    Защита, действие и селективность которой зависят от сравнения величин (или фаз и величин) токов по концам защищаемой линии.
    [ http://docs.cntd.ru/document/1200069370]

    продольная дифференциальная защита

    Защита, срабатывание и селективность которой зависят от сравнения амплитуд или амплитуд и фаз токов на концах защищаемого участка.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    продольная дифференциальная защита линий
    -
    [Интент]

    EN

    longitudinal differential protection
    line differential protection (US)

    protection the operation and selectivity of which depend on the comparison of magnitude or the phase and magnitude of the currents at the ends of the protected section
    [ IEV ref 448-14-16]

    FR

    protection différentielle longitudinale
    protection dont le fonctionnement et la sélectivité dépendent de la comparaison des courants en amplitude, ou en phase et en amplitude, entre les extrémités de la section protégée
    [ IEV ref 448-14-16]


    Продольная дифференциальная защита линий

    Защита основана на принципе сравнения значений и фаз токов в начале и конце линии. Для сравнения вторичные обмотки трансформаторов тока с обеих сторон линии соединяются между собой проводами, как показано на рис. 7.17. По этим проводам постоянно циркулируют вторичные токи I 1 и I 2. Для выполнения дифференциальной защиты параллельно трансформаторам тока (дифференциально) включают измерительный орган тока ОТ.
    Ток в обмотке этого органа всегда будет равен геометрической сумме токов, приходящих от обоих трансформаторов тока: I Р = I 1 + I 2 Если коэффициенты трансформации трансформаторов тока ТА1 и ТА2 одинаковы, то при нормальной работе, а также внешнем КЗ (точка K1 на рис. 7.17, а) вторичные токи равны по значению I 1 =I2 и направлены в ОТ встречно. Ток в обмотке ОТ I Р = I 1 + I 2 =0, и ОТ не приходит в действие. При КЗ в защищаемой зоне (точка К2 на рис. 7.17, б) вторичные токи в обмотке ОТ совпадут по фазе и, следовательно, будут суммироваться: I Р = I 1 + I 2. Если I Р >I сз, орган тока сработает и через выходной орган ВО подействует на отключение выключателей линии.
    Таким образом, дифференциальная продольная защита с постоянно циркулирующими токами в обмотке органа тока реагирует на полный ток КЗ в защищаемой зоне (участок линии, заключенный между трансформаторами тока ТА1 и ТА2), обеспечивая при этом мгновенное отключение поврежденной линии.
    Практическое использование схем дифференциальных защит потребовало внесения ряда конструктивных элементов, обусловленных особенностями работы этих защит на линиях энергосистем.
    Во-первых, для отключения протяженных линий с двух сторон оказалось необходимым подключение по дифференциальной схеме двух органов тока: одного на подстанции 1, другого на подстанции 2 (рис. 7.18). Подключение двух органов тока привело к неравномерному распределению вторичных токов между ними (токи распределялись обратно пропорционально сопротивлениям цепей), появлению тока небаланса и понижению чувствительности защиты. Заметим также, что этот ток небаланса суммируется в ТО с током небаланса, вызванным несовпадением характеристик намагничивания и некоторой разницей в коэффициентах трансформации трансформаторов тока. Для отстройки от токов небаланса в защите были применены не простые дифференциальные реле, а дифференциальные реле тока с торможением KAW, обладающие большей чувствительностью.
    Во-вторых, соединительные провода при их значительной длине обладают сопротивлением, во много раз превышающим допустимое для трансформаторов тока сопротивление нагрузки. Для понижения нагрузки были применены специальные трансформаторы тока с коэффициентом трансформации n, с помощью которых был уменьшен в п раз ток, циркулирующий по проводам, и тем самым снижена в n2 раз нагрузка от соединительных проводов (значение нагрузки пропорционально квадрату тока). В защите эту функцию выполняют промежуточные трансформаторы тока TALT и изолирующие TAL. В схеме защиты изолирующие трансформаторы TAL служат еще и для отделения соединительных проводов от цепей реле и защиты цепей реле от высокого напряжения, наводимого в соединительных проводах во время прохождения по линии тока КЗ.

    5313
    Рис. 7.17. Принцип выполнения продольной дифференциальной защиты линии и прохождение тока в органе тока при внешнем КЗ (а) и при КЗ в защищаемой зоне (б)

     

    5314
    Рис. 7.18. Принципиальная схема продольной дифференциальной защиты линии:
    ZA - фильтр токов прямой и обратной последовательностей; TALT - промежуточный трансформатор тока; TAL - изолирующий трансформатор; KAW - дифференциальное реле с торможением; Р - рабочая и T - тормозная обмотки реле

    Распространенные в электрических сетях продольные дифференциальные защиты типа ДЗЛ построены на изложенных выше принципах и содержат элементы, указанные на рис. 7.18. Высокая стоимость соединительных проводов во вторичных цепях ДЗЛ ограничивает область се применения линиями малой протяженности (10-15 км).
    Контроль исправности соединительных проводов. В эксплуатации возможны повреждения соединительных проводов: обрывы, КЗ между ними, замыкания одного провода на землю.
    При обрыве соединительного провода (рис. 7.19, а) ток в рабочей Р и тормозной Т обмотках становится одинаковым и защита может неправильно сработать при сквозном КЗ и даже при токе нагрузки (в зависимости от значения Ic з .
    Замыкание между соединительными проводами (рис. 7.19, б) шунтирует собой рабочие обмотки реле, и тогда защита может отказать в работе при КЗ в защищаемой зоне.
    Для своевременного выявления повреждений исправность соединительных проводов контролируется специальным устройством (рис. 7.20). Контроль основан на том, что на рабочий переменный ток, циркулирующий в соединительных проводах при их исправном состоянии, накладывается выпрямленный постоянный ток, не оказывающий влияния на работу защиты. Две секции вторичной обмотки TAL соединены разделительным конденсатором С1, представляющим собой большое сопротивление для постоянного тока и малое для переменного. Благодаря конденсаторам С1 в обоих комплектах защит создается последовательная цепь циркуляции выпрямленного тока по соединительным проводам и обмоткам минимальных быстродействующих реле тока контроля КА. Выпрямленное напряжение подводится к соединительным проводам только на одной подстанции, где устройство контроля имеет выпрямитель VS, получающий в свою очередь питание от трансформатора напряжения TV рабочей системы шин. Подключение устройства контроля к той или другой системе шин осуществляется вспомогательными контактами шинных разъединителей или. реле-повторителями шинных разъединителей защищаемой линии.
    Замыкающие контакты КЛ контролируют цепи выходных органов защиты.
    При обрыве соединительных проводов постоянный ток исчезает, и реле контроля КА снимает оперативный ток с защит на обеих подстанциях, и подастся сигнал о повреждении. При замыкании соединительных проводов между собой подается сигнал о выводе защиты из действия, но только с одной стороны - со стороны подстанции, где нет выпрямителя.
    5315
    Рис. 7.19. Прохождение тока в обмотках реле KAW при обрыве (а) и замыкании между собой соединительных проводов (б):
    К1 - точка сквозного КЗ; К2 - точка КЗ в защищаемой зоне
    В устройстве контроля имеется приспособление для периодических измерений сопротивления изоляции соединительных проводов относительно земли. Оно подаст сигнал при снижении сопротивления изоляции любого из соединительных проводов ниже 15-20 кОм.
    Если соединительные провода исправны, ток контроля, проходящий по ним, не превышает 5-6 мА при напряжении 80 В. Эти значения должны периодически проверяться оперативным персоналом в соответствии с инструкцией по эксплуатации защиты.
    Оперативному персоналу следует помнить, что перед допуском к любого рода работам на соединительных проводах необходимо отключать с обеих сторон продольную дифференциальную защиту, устройство контроля соединительных проводов и пуск от защиты устройства резервирования при отказе выключателей УРОВ.
    После окончания работ на соединительных проводах следует проверить их исправность. Для этого включается устройство контроля на подстанции, где оно не имеет выпрямителя, при этом должен появиться сигнал неисправности. Затем устройство контроля включают на другой подстанции (на соединительные провода подают выпрямленное напряжение) и проверяют, нет ли сигнала о повреждении. Защиту и цепь пуска УРОВ от защиты вводят в работу при исправных соединительных проводах.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-5.html]

    Тематики

    Синонимы

    EN

    DE

    • Längsdifferentialschutz, m

    FR

    Немецко-русский словарь нормативно-технической терминологии > Längsdifferentialschutz, m

  • 5 Funktionsabbild

    1. мнемоническая схема электростанции (подстанции, электрической сети)
    2. мнемоническая схема электростанции

     

    мнемоническая схема электростанции (подстанции, электрической сети)
    Совокупность элементов и устройств отображения информации, представляющая в наглядном виде электрическую схему электростанции (подстанции, электрической сети) и состояние коммутационных аппаратов, которой могут быть приданы функции управления.
    [ ГОСТ 24291-90]

     

    Тематики

    EN

    DE

    FR

    12 мнемоническая схема электростанции [подстанции, электрической сети]

    Совокупность элементов и устройств отображения информации, представляющая в наглядном виде электрическую схему электростанции [подстанции, электрической сети] и состояние коммутационных аппаратов, которой могут быть приданы функции управления

    605-03-03

    de Funktionsabbild

    en mimic diagram

    fr schéma synoptique, tableau synoptique

    Источник: ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Funktionsabbild

  • 6 Einstrich-Netzschema

    1. однолинейная схема электростанции (подстанции)
    2. однолинейная схема электростанции
    3. однолинейная схема

     

    однолинейная схема
    Принципиальная электрическая схема в однолинейном представлении. Таким способом изображают принципиальные электрические схемы питающих, распределительных и силовых цепей.
    [Интент]

    EN

    single-line diagram
    a system diagram in which the polyphase links are represented by their equivalent single line
    [IEV number 601-02-04]

    FR

    schéma unifilaire d'un réseau
    schéma d'un réseau dans lequel les liaisons polyphasées sont représentées par leur équivalent monophasé
    [IEV number 601-02-04]

    0614

    а) многолинейная схема (многолинейное представление);
    б) однолинейная схема (однолинейное представление)

    Тематики

    • проектирование, документация

    Синонимы

    EN

    DE

    FR

     

    однолинейная схема электростанции (подстанции)
    Схема соединений электрической части электростанции (подстанции), в которой многофазные связи показаны для одной фазы.
    [ ГОСТ 24291-90]

     

    Тематики

    EN

    DE

    FR

    • schema unifilaire d`un reseau

    13 однолинейная схема электростанции [подстанции]

    Схема соединений электрической части электростанции [подстанции], в которой многофазные связи показаны для одной фазы

    601-02-04

    de Einstrich-Netzschema

    en single-line diagram

    fr schéma unifilaire d’un réseau

    Источник: ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Einstrich-Netzschema

  • 7 Dreiphasen-Netzschema

    1. трехлинейная схема электростанции (подстанции)
    2. трехлинейная схема электростанции

     

    трехлинейная схема электростанции (подстанции)
    Схема соединений трехфазной электрической части электростанции (подстанции), в которой показаны соединения каждого фазного и нейтрального проводов.
    [ ГОСТ 24291-90]

     

    Тематики

    EN

    DE

    FR

    • schema triphase d`un reseau

    14 трехлинейная схема электростанции [подстанции]

    Схема соединений трехфазной электрической части электростанции [подстанции], в которой показаны соединения каждого фазного и нейтрального проводов

    601-02-03

    de Dreiphasen-Netzschema

    en three-phase system diagram

    fr schema triphasé d’un réseau

    Источник: ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Dreiphasen-Netzschema

  • 8 Steuertafel

    1. щит управления электростанции (подстанции)
    2. щит управления электростанции

     

    щит управления электростанции (подстанции)
    Совокупность пультов и панелей с устройствами управления, контроля, сигнализации и защиты электростанции (подстанции), расположенных в одном помещении.
    [ ГОСТ 24291-90]

    EN

    control board
    a board on which are fixed control devices which are necessary to control and/or display a substation or a system
    [IEV number 605-03-01]

    FR

    tableau de conduite
    panneau sur lequel sont montés les dispositifs nécessaires à la conduite et/ou à la surveillance d'un poste ou d'un réseau
    [IEV number 605-03-01]

    Тематики

    Синонимы

    • ЩУ

    EN

    DE

    FR

    17 щит управления электростанции [подстанции]; ЩУ

    Совокупность пультов и панелей с устройствами управления, контроля, сигнализации и защиты электростанции [подстанции], расположенных в одном помещении

    605-03-01(02)**

    de Steuertafel

    en control board

    fr tableau de conduite

    Источник: ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Steuertafel

  • 9 Maststation

    1. столбовая трансформаторная подстанция
    2. мачтовая трансформаторная подстанция
    3. мачтовая (трансформаторная) подстанция

     

    мачтовая трансформаторная ПС
    МТП

    Открытая трансформаторная ПС, все оборудование которой установлено на конструкциях (в том числе на двух и более стойках опор ВЛ) с площадкой обслуживания на высоте, не требующей ограждения ПС.
    [ПУЭ, п. 4.2.11]
    [Приказ Минэнерго РФ от 20.06.2003 N 242 "Об утверждении глав Правил устройства электроустановок" (вместе с "Правилами устройства электроустановок. Седьмое издание. Раздел 4. Распределительные устройства и подстанции. Главы 4.1, 4.2")]

    мачтовая подстанция

    мачтовая трансформаторная подстанция
    Открытая трансформаторная подстанция, оборудование которой установлено на одной или нескольких опорах линии электропередачи, не требующая наземных ограждений.
    [ ГОСТ 24291-90]

    столбовая (мачтовая) трансформаторная подстанция
    Столбовой (мачтовой) трансформаторной подстанцией называется открытая трансформаторная подстанция, все оборудование которой установлено на конструкциях или на опорах ВЛ на высоте, не требующей ограждения подстанции.
    [ПУЭ, 4.2.9.]

    EN

    pole-mounted substation
    an outdoor distribution substation mounted on one or more poles
    [IEV number 605-02-19]

    FR

    poste sur poteau
    poste extérieur de distribution monté sur un ou plusieurs poteaux
    [IEV number 605-02-19]


    МТП сооружают на А-, П- или АП-образных или одностоечных конструкциях, изготавливаемых из железобетонных или деревянных стоек.

    На А-образной конструкции монтируется все оборудование ПС: разъединитель, предохранители, разрядники, однофазный трансформатор мощностью более 10 кВА и распределительный щит 0,23— 0,4 кВ. Подстанция не имеет площадки обслуживания и лестницы.

    П-образные конструкции используются для ПС с трехфазными трансформаторами мощностью до 250 кВА включительно. Трансформатор располагается на площадке на высоте от земли не менее 3,5 м.

    АП-образные конструкции применяются для ПС с трансформаторами мощностью до 400 кВА. На них монтируются все оборудование, в том числе и разъединитель. Для обслуживания МТП на высоте не менее 3 м должна быть устроена площадка с перилами. Для подъема на МТП рекомендуется применять лестницы с устройством, запрещающим подъем по ней при включенном коммутационном аппарате.

    [ http://energy-ua.com/elektricheskie-p/klassifikatsiya.html]
     

    5277
    Мачтовая трансформаторная подстанция

    Тематики

    Синонимы

    EN

    DE

    FR

     

    столбовая трансформаторная ПС
    СТП

    Открытая трансформаторная ПС, все оборудование которой установлено на одностоечной опоре ВЛ на высоте, не требующей ограждения ПС
    [Приказ Минэнерго РФ от 20.06.2003 N 242 "Об утверждении глав Правил устройства электроустановок" (вместе с "Правилами устройства электроустановок. Седьмое издание. Раздел 4. Распределительные устройства и подстанции. Главы 4.1, 4.2")]

    столбовая (мачтовая) трансформаторная подстанция
    Столбовой (мачтовой) трансформаторной подстанцией называется открытая трансформаторная подстанция, все оборудование которой установлено на конструкциях или на опорах ВЛ на высоте, не требующей ограждения подстанции.
    [ПУЭ, 4.2.9.]

    EN

    pole-mounted substation
    an outdoor distribution substation mounted on one or more poles
    [IEV number 605-02-19]

    FR

    poste sur poteau
    poste extérieur de distribution monté sur un ou plusieurs poteaux
    [IEV number 605-02-19]

    5276

    Столбовая трансформаторная подстанция
    [ http://www.novosel.ru/mssg795168.htm]

    Тематики

    EN

    DE

    FR

    32 мачтовая (трансформаторная) подстанция

    Открытая трансформаторная подстанция, оборудование которой установлено на одной или нескольких опорах линии электропередачи, не требующая наземных ограждений

    605-02-19*

    de Maststation

    en pole-mounted substation

    fr poste sur poteau

    Источник: ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Maststation

  • 10 örtlicher Reserveschutz (stationsbezogen), m

    1. местная резервная защита подстанции

     

    местная резервная защита подстанции
    Резервная защита с питанием от измерительных трансформаторов, расположенных на той же самой подстанции, что и соответствующая основная защита, и не соединенных с той же самой первичной цепью.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    EN

    substation local backup protection
    backup protection which is energized from instrument transformers located within the same substation as the corresponding main protection and not associated with the same primary circuit
    [IEV ref 448-11-16]

    FR

    protection de secours locale de poste
    protection de secours alimentée par des transformateurs de mesure situés dans le même poste que ceux alimentant la protection principale correspondante mais non raccordés dans la même cellule
    [IEV ref 448-11-16]

    Тематики

    EN

    DE

    • örtlicher Reserveschutz (stationsbezogen), m

    FR

    Немецко-русский словарь нормативно-технической терминологии > örtlicher Reserveschutz (stationsbezogen), m

  • 11 Hilisaggregate

    1. собственные нужды электростанции (подстанции)

     

    собственные нужды электростанции (подстанции)
    Совокупность вспомогательных устройств и относящейся к ним электрической части, обеспечивающая работу электростанции (подстанции).
    [ ГОСТ 24291-90]

    EN

    common auxiliaries
    a group of auxiliary equipment which is common to the unit and the power station
    Examples: lighting, compressors.
    [IEV number 602-02-30]

    FR

    auxiliaires généraux
    ensemble des dispositifs auxiliaires communs à la tranche et à la centrale
    Exemples: éclairage, compresseurs.
    [IEV number 602-02-30]

     

    Тематики

    Синонимы

    • СН

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Hilisaggregate

  • 12 Einheitsaufbau

    сущ.
    3) электр. комплектная конструкция (напр. подстанции), стандартная конструкция (напр. подстанции)

    Универсальный немецко-русский словарь > Einheitsaufbau

  • 13 Einheitsbauart

    сущ.
    2) ж.д. стандартная (типовая, унифицированная) конструкция
    3) электр. комплектная конструкция (напр. подстанции), стандартная конструкция (напр. подстанции)

    Универсальный немецко-русский словарь > Einheitsbauart

  • 14 Schaltfeld

    сущ.
    1) комп. наборная панель, программная панель, наборное поле (для коммутации программы работы АВМ)
    5) радио. панель коммутатора, панель пульта управления
    6) электр. камера распределительного устройства, коммутационная ячейка, комплектный распределительный шкаф, ячейка комплектного распределительного устройства, панель распределительного щита, участок открытой подстанции, на котором расположена коммутационная аппаратура

    Универсальный немецко-русский словарь > Schaltfeld

  • 15 Schaltwarte

    сущ.
    1) общ. возможно значение "операторская"
    5) электр. диспетчерский зал, коммутационный пункт, помещение (главного) щита управления, диспетчерский пост (подстанции), главный щит управления
    7) автом. помещение распределительного устройства, пульт управления
    8) дер. главный пульт управления, централизованный пульт управления

    Универсальный немецко-русский словарь > Schaltwarte

  • 16 Unterspannungsanlage

    сущ.
    ж.д. низковольтная аппаратура подстанции, низковольтное распределительное устройство подстанции

    Универсальный немецко-русский словарь > Unterspannungsanlage

  • 17 Unterwerksabschnitt

    Универсальный немецко-русский словарь > Unterwerksabschnitt

  • 18 Unterwerksbahnhof

    Универсальный немецко-русский словарь > Unterwerksbahnhof

  • 19 automatische Wiedereinschaltung

    1. автоматическое повторное включение

     

    автоматическое повторное включение
    АПВ

    Коммутационный цикл, при котором выключатель вслед за его отключением автоматически включается через установленный промежуток времени (О - tбт - В).
    [ ГОСТ Р 52565-2006]

    автоматическое повторное включение
    АПВ

    Автоматическое включение аварийно отключившегося элемента электрической сети
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    (автоматическое) повторное включение
    АПВ


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    automatic reclosing
    automatic reclosing of a circuit-breaker associated with a faulted section of a network after an interval of time which permits that section to recover from a transient fault
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    auto-reclosing
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEC 62271-100, ed. 2.0 (2008-04)]
    auto-reclosing (of a mechanical switching device)
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEV number 441-16-10]

    FR

    réenclenchement automatique
    refermeture du disjoncteur associé à une fraction de réseau affectée d'un défaut, par un dispositif automatique après un intervalle de temps permettant la disparition d'un défaut fugitif
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    refermeture automatique
    séquence de manoeuvres par laquelle, à la suite d’une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEC 62271-100, ed. 2.0 (2008-04)]
    refermeture automatique (d'un appareil mécanique de connexion)
    séquence de manoeuvres par laquelle, à la suite d'une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEV number 441-16-10]

     
    Автоматическое повторное включение (АПВ), быстрое автоматическое обратное включение в работу высоковольтных линий электропередачи и электрооборудования высокого напряжения после их автоматического отключения; одно из наиболее эффективных средств противоаварийной автоматики. Повышает надёжность электроснабжения потребителей и восстанавливает нормальный режим работы электрической системы. Во многих случаях после быстрого отключения участка электрической системы, на котором возникло короткое замыкание в результате кратковременного нарушения изоляции или пробоя воздушного промежутка, при последующей подаче напряжения повторное короткое замыкание не возникает.   АПВ выполняется с помощью автоматических устройств, воздействующих на высоковольтные выключатели после их аварийного автоматического отключения от релейной защиты. Многие из этих автоматических устройств обеспечивают АПВ при самопроизвольном отключении выключателей, например при сильных сотрясениях почвы во время близких взрывов, землетрясениях и т. п. Эффективность АПВ тем выше, чем быстрее следует оно за аварийным отключением, т. е. чем меньше время перерыва питания потребителей. Это время зависит от длительности цикла АПВ. В электрических системах применяют однократное АПВ — с одним циклом, двукратное — при неуспешном первом цикле, и трёхкратное — с тремя последовательными циклами. Цикл АПВ — время от момента подачи сигнала на отключение до замыкания цепи главными контактами выключателя — состоит из времени отключения и включения выключателя и времени срабатывания устройства АПВ. Длительность бестоковой паузы, когда потребитель не получает электроэнергию, выбирается такой, чтобы успело произойти восстановление изоляции (деионизация среды) в месте короткого замыкания, привод выключателя после отключения был бы готов к повторному включению, а выключатель к моменту замыкания его главных контактов восстановил способность к отключению поврежденной цепи в случае неуспешного АПВ. Время деионизации зависит от среды, климатических условий и других факторов. Время восстановления отключающей способности выключателя определяется его конструкцией и количеством циклов АПВ., предшествовавших данному. Обычно длительность 1-го цикла не превышает 0,5—1,5 сек, 2-го — от 10 до 15 сек, 3-го — от 60 до 120 сек.

    Наиболее распространено однократное АПВ, обеспечивающее на воздушных линиях высокого напряжения (110 кв и выше) до 86 %, а на кабельных линиях (3—10 кв) — до 55 % успешных включений. Двукратное АПВ обеспечивает во втором цикле до 15 % успешных включений. Третий цикл увеличивает число успешных включений всего на 3—5 %. На линиях электропередачи высокого напряжения (от 110 до 500 кВ) применяется однофазовое АПВ; при этом выключатели должны иметь отдельные приводы на каждой фазе.

    Применение АПВ экономически выгодно, т. к. стоимость устройств АПВ и их эксплуатации несравнимо меньше ущерба из-за перерыва в подаче электроэнергии.
    [ БСЭ]

     

    НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ АПВ

    Опыт эксплуатации сетей высокого напряжения показал, что если поврежденную линию электропередачи быстро отключить, т. е. снять с нее напряжение, то в большинстве случаев повреждение ликвидируется. При этом электрическая дуга, возникавшая в месте короткого замыкания (КЗ), не успевает вызвать существенных разрушений оборудования, препятствующих обратному включению линии под напряжение.
    Самоустраняющиеся повреждения принято называть неустойчивыми. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывании гололеда, падения деревьев, задевания проводов движущимися механизмами.
    Данные о повреждаемости воздушных линий электропередачи (ВЛ) за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50—90 %.
    При ликвидации аварии оперативный персонал производит обычно опробование линии путем включения ее под напряжение, так как отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения носят неустойчивый характер. Эту операцию называют повторным включением.
    Если КЗ самоустранилось, то линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
    На ВЛ успешность повторного включения сильно зависит от номинального напряжения линий. На линиях ПО кВ и выше успешность повторного включения значительно выше, чем на ВЛ 6—35 кВ. Высокий процент успешных повторных включений в сетях высокого и сверхвысокого напряжения объясняется быстродействием релейной защиты (как правило, не более 0,1-0,15 с), большим сечением проводов и расстояний между ними, высокой механической прочностью опор. [Овчинников В. В., Автоматическое повторное включение. — М.:Энергоатомиздат, 1986.— 96 с: ил. — (Б-ка электромонтера; Вып. 587). Энергоатомиздат, 1986]

    АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ (АПВ)

    3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.

    Должно предусматриваться автоматическое повторное включение:

    1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;

    2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);

    3) трансформаторов (см. 3.3.26);

    4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).

    Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.

    Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.

    3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:

    1) отключении выключателя персоналом дистанционно или при помощи телеуправления;

    2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

    3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.

    Устройства АПВ должны быть выполнены так, чтобы была исключена возможностью многократного включения на КЗ при любой неисправности в схеме устройства.

    Устройства АПВ должны выполняться с автоматическим возвратом.

    3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.

    Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т. е. при наличии симметричного напряжения на линии).

    Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.

    3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.

    3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее - если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.

    В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.

    3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.

    Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.

    С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).

    3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.

    Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.

    При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии. С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).

    В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.

    3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.

    3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) должен предусматриваться один из следующих видов трехфазного АПВ (или их комбинаций):

    а) быстродействующее ТАПВ (БАПВ)

    б) несинхронное ТАПВ (НАПВ);

    в) ТАПВ с улавливанием синхронизма (ТАПВ УС).

    Кроме того, может предусматриваться однофазное АПВ (ОАПВ) в сочетании с различными видами ТАПВ, если выключатели оборудованы пофазным управлением и не нарушается устойчивость параллельной работы частей энергосистемы в цикле ОАПВ.

    Выбор видов АПВ производится, исходя из совокупности конкретных условий работы системы и оборудования с учетом указаний 3.3.11-3.3.15.

    3.3.11. Быстродействующее АПВ, или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов), рекомендуется предусматривать на линиях по 3.3.10 для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. БАПВ может применяться при наличии выключателей, допускающих БАПВ, если после включения обеспечивается сохранение синхронной параллельной работы систем и максимальный электромагнитный момент синхронных генераторов и компенсаторов меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины.

    Оценка максимального электромагнитного момента должна производиться для предельно возможного расхождения угла за время БАПВ. Соответственно запуск БАПВ должен производиться лишь при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию. БАПВ должно блокироваться при срабатывании резервных защит и блокироваться или задерживаться при работе УРОВ.

    Если для сохранения устойчивости энергосистемы при неуспешном БАПВ требуется большой объем воздействий от противоаварийной автоматики, применение БАПВ не рекомендуется.

    3.3.12. Несинхронное АПВ (НАПВ) может применяться на линиях по 3.3.10 (в основном 110-220 кВ), если:

    а) максимальный электромагнитный момент синхронных генераторов и компенсаторов, возникающий при несинхронном включении, меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины, при этом в качестве практических критериев оценки допустимости НАПВ принимаются расчетные начальные значения периодических составляющих токов статора при угле включения 180°;

    б) максимальный ток через трансформатор (автотрансформатор) при угле включения 180° меньше тока КЗ на его выводах при питании от шин бесконечной мощности;

    в) после АПВ обеспечивается достаточно быстрая ресинхронизация; если в результате несинхронного автоматического повторного включения возможно возникновение длительного асинхронного хода, должны применяться специальные мероприятия для его предотвращения или прекращения.

    При соблюдении этих условий НАПВ допускается применять также в режиме ремонта на параллельных линиях.

    При выполнении НАПВ необходимо принять меры по предотвращению излишнего срабатывания защиты. С этой целью рекомендуется, в частности, осуществлять включение выключателей при НАПВ в определенной последовательности, например выполнением АПВ с одной из сторон линии с контролем наличия напряжения на ней после успешного ТАПВ с противоположной стороны.

    3.3.13. АПВ с улавливанием синхронизма может применяться на линиях по 3.3.10 для включения линии при значительных (примерно до 4%) скольжениях и допустимом угле.

    Возможно также следующее выполнение АПВ. На конце линии, который должен включаться первым, производится ускоренное ТАПВ (с фиксацией срабатывания быстродействующей защиты, зона действия которой охватывает всю линию) без контроля напряжения на линии (УТАПВ БК) или ТАПВ с контролем отсутствия напряжения на линии (ТАПВ ОН), а на другом ее конце - ТАПВ с улавливанием синхронизма. Последнее производится при условии, что включение первого конца было успешным (это может быть определено, например, при помощи контроля наличия напряжения на линии).

    Для улавливания синхронизма могут применяться устройства, построенные по принципу синхронизатора с постоянным углом опережения.

    Устройства АПВ следует выполнять так, чтобы имелась возможность изменять очередность включения выключателей по концам линии.

    При выполнении устройства АПВ УС необходимо стремиться к обеспечению его действия при возможно большей разности частот. Максимальный допустимый угол включения при применении АПВ УС должен приниматься с учетом условий, указанных в 3.3.12. При применении устройства АПВ УС рекомендуется его использование для включения линии персоналом (полуавтоматическая синхронизация).

    3.3.14. На линиях, оборудованных трансформаторами напряжения, для контроля отсутствия напряжения (КОН) и контроля наличия напряжения (КНН) на линии при различных видах ТАПВ рекомендуется использовать органы, реагирующие на линейное (фазное) напряжение и на напряжения обратной и нулевой последовательностей. В некоторых случаях, например на линиях без шунтирующих реакторов, можно не использовать напряжение нулевой последовательности.

    3.3.15. Однофазное автоматическое повторное включение (ОАПВ) может применяться только в сетях с большим током замыкания на землю. ОАПВ без автоматического перевода линии на длительный неполнофазный режим при устойчивом повреждении фазы следует применять:

    а) на одиночных сильно нагруженных межсистемных или внутрисистемных линиях электропередачи;

    б) на сильно нагруженных межсистемных линиях 220 кВ и выше с двумя и более обходными связями при условии, что отключение одной из них может привести к нарушению динамической устойчивости энергосистемы;

    в) на межсистемных и внутрисистемных линиях разных классов напряжения, если трехфазное отключение линии высшего напряжения может привести к недопустимой перегрузке линий низшего напряжения с возможностью нарушения устойчивости энергосистемы;

    г) на линиях, связывающих с системой крупные блочные электростанции без значительной местной нагрузки;

    д) на линиях электропередачи, где осуществление ТАПВ сопряжено со значительным сбросом нагрузки вследствие понижения напряжения.

    Устройство ОАПВ должно выполняться так, чтобы при выводе его из работы или исчезновении питания автоматически осуществлялся перевод действия защит линии на отключение трех фаз помимо устройства.

    Выбор поврежденных фаз при КЗ на землю должен осуществляться при помощи избирательных органов, которые могут быть также использованы в качестве дополнительной быстродействующей защиты линии в цикле ОАПВ, при ТАПВ, БАПВ и одностороннем включении линии оперативным персоналом.

    Выдержка временем ОАПВ должна отстраиваться от времени погасания дуги и деионизации среды в месте однофазного КЗ в неполнофазном режиме с учетом возможности неодновременного срабатывания защиты по концам линии, а также каскадного действия избирательных органов.

    3.3.16. На линиях по 3.3.15 ОАПВ должно применяться в сочетании с различными видами ТАПВ. При этом должна быть предусмотрена возможность запрета ТАПВ во всех случаях ОАПВ или только при неуспешном ОАПВ. В зависимости от конкретных условий допускается осуществление ТАПВ после неуспешного ОАПВ. В этих случаях предусматривается действие ТАПВ сначала на одном конце линии с контролем отсутствия напряжения на линии и с увеличенной выдержкой времени.

    3.3.17. На одиночных линиях с двусторонним питанием, связывающих систему с электростанцией небольшой мощности, могут применяться ТАПВ с автоматической самосинхронизацией (АПВС) гидрогенераторов для гидроэлектростанций и ТАПВ в сочетании с делительными устройствами - для гидро- и теплоэлектростанций.

    3.3.18. На линиях с двусторонним питанием при наличии нескольких обходных связей следует применять:

    1) при наличии двух связей, а также при наличии трех связей, если вероятно одновременное длительное отключение двух из этих связей (например, двухцепной линии):

    несинхронное АПВ (в основном для линий 110-220 кВ и при соблюдении условий, указанных в 3.3.12, но для случая отключения всех связей);

    АПВ с проверкой синхронизма (при невозможности выполнения несинхронного АПВ по причинам, указанным в 3.3.12, но для случая отключения всех связей).

    Для ответственных линий при наличии двух связей, а также при наличии трех связей, две из которых - двухцепная линия, при невозможности применения НАПВ по причинам, указанным в 3.3.12, разрешается применять устройства ОАПВ, БАПВ или АПВ УС (см. 3.3.11, 3.3.13, 3.3.15). При этом устройства ОАПВ и БАПВ следует дополнять устройством АПВ с проверкой синхронизма;

    2) при наличии четырех и более связей, а также при наличии трех связей, если в последнем случае одновременное длительное отключение двух из этих связей маловероятно (например, если все линии одноцепные), - АПВ без проверки синхронизма.

    3.3.19. Устройства АПВ с проверкой синхронизма следует выполнять на одном конце линии с контролем отсутствия напряжения на линии и с контролем наличия синхронизма, на другом конце - только с контролем наличия синхронизма. Схемы устройства АПВ с проверкой синхронизма линии должны выполняться одинаковыми на обоих концах с учетом возможности изменения очередности включения выключателей линии при АПВ.

    Рекомендуется использовать устройство АПВ с проверкой синхронизма для проверки синхронизма соединяемых систем при включении линии персоналом.

    3.3.20. Допускается совместное применение нескольких видов трехфазного АПВ на линии, например БАПВ и ТАПВ с проверкой синхронизма. Допускается также использовать различные виды устройств АПВ на разных концах линии, например УТАПВ БК (см. 3.3.13) на одном конце линии и ТАПВ с контролем наличия напряжения и синхронизма на другом.

    3.3.21. Допускается сочетание ТАПВ с неселективными быстродействующими защитами для исправления неселективного действия последних. В сетях, состоящих из ряда последовательно включенных линий, при применении для них неселективных быстродействующих защит для исправления их действия рекомендуется применять поочередное АПВ; могут также применяться устройства АПВ с ускорением защиты до АПВ или с кратностью действия (не более трех), возрастающей по направлению к источнику питания.

    3.3.22. При применении трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых устанавливаются короткозамыкатели и отделители, для отключения отделителя в бестоковую паузу время действия устройства АПВ должно быть отстроено от суммарного времени включения короткозамыкателя и отключения отделителя. При применении трехфазного АПВ двукратного действия (см. 3.3.6) время действия АПВ в первом цикле по указанному условию не должно увеличиваться, если отключение отделителя предусматривается в бестоковую паузу второго цикла АПВ.

    Для линий, на которые вместо выключателей устанавливаются отделители, отключение отделителей в случае неуспешного АПВ в первом цикле должно производиться в бестоковую паузу второго цикла АПВ.

    3.3.23. Если в результате действия АПВ возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если такое включение для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует предусматривать автоматическое отключение этих синхронных машин при исчезновении питания или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АПВ.

    Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие излишние срабатывания АЧР при действии АПВ.

    3.3.24. АПВ шин электростанций и подстанций при наличии специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по одному из двух вариантов:

    1) автоматическим опробованием (постановка шин под напряжение выключателем от АПВ одного из питающих элементов);

    2) автоматической сборкой схемы; при этом первым от устройства АПВ включается один из питающих элементов (например, линия, трансформатор), при успешном включении этого элемента производится последующее, возможно более полное автоматическое восстановление схемы доаварийного режима путем включения других элементов. АПВ шин по этому варианту рекомендуется применять в первую очередь для подстанций без постоянного дежурства персонала.

    При выполнении АПВ шин должны применяться меры, исключающие несинхронное включение (если оно является недопустимым).

    Должна обеспечиваться достаточная чувствительность защиты шин на случай неуспешного АПВ.

    3.3.25. На двухтрансформаторных понижающих подстанциях при раздельной работе трансформаторов, как правило, должны предусматриваться устройства АПВ шин среднего и низшего напряжений в сочетании с устройствами АВР; при внутренних повреждениях трансформаторов должно действовать АВР, при прочих повреждениях - АПВ (см. 3.3.42).

    Допускается для двухтрансформаторной подстанции, в нормальном режиме которой предусматривается параллельная работа трансформаторов на шинах данного напряжения, устанавливать дополнительно к устройству АПВ устройство АВР, предназначенное для режима, когда один из трансформаторов выведен в резерв.

    3.3.26. Устройствами АПВ должны быть оборудованы все одиночные понижающие трансформаторы мощностью более 1 MB·А на подстанциях энергосистем, имеющие выключатель и максимальную токовую защиту с питающей стороны, когда отключение трансформатора приводит к обесточению электроустановок потребителей. Допускается в отдельных случаях действие АПВ и при отключении трансформатора защитой от внутренних повреждений.

    3.3.27. При неуспешном АПВ включаемого первым выключателем элемента, присоединенного двумя или более выключателями, АПВ остальных выключателей этого элемента, как правило, должно запрещаться.

    3.3.28. При наличии на подстанции или электростанции выключателей с электромагнитным приводом, если от устройства АПВ могут быть одновременно включены два или более выключателей, для обеспечения необходимого уровня напряжения аккумуляторной батареи при включении и для снижения сечения кабелей цепей питания электромагнитов включения следует, как правило, выполнять АПВ так, чтобы одновременное включение нескольких выключателей было исключено (например, применением на присоединениях АПВ с различными выдержками времени).

    Допускается в отдельных случаях (преимущественно при напряжении 110 кВ и большом числе присоединений, оборудованных АПВ) одновременное включение от АПВ двух выключателей.

    3.3.29. Действие устройств АПВ должно фиксироваться указательными реле, встроенными в реле указателями срабатывания, счетчиками числа срабатываний или другими устройствами аналогичного назначения.
    [ ПУЭ]

    Тематики

    Обобщающие термины

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > automatische Wiedereinschaltung

  • 20 Kurzunterbrechung

    1. автоматическое повторное включение

     

    автоматическое повторное включение
    АПВ

    Коммутационный цикл, при котором выключатель вслед за его отключением автоматически включается через установленный промежуток времени (О - tбт - В).
    [ ГОСТ Р 52565-2006]

    автоматическое повторное включение
    АПВ

    Автоматическое включение аварийно отключившегося элемента электрической сети
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    (автоматическое) повторное включение
    АПВ


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    automatic reclosing
    automatic reclosing of a circuit-breaker associated with a faulted section of a network after an interval of time which permits that section to recover from a transient fault
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    auto-reclosing
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEC 62271-100, ed. 2.0 (2008-04)]
    auto-reclosing (of a mechanical switching device)
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEV number 441-16-10]

    FR

    réenclenchement automatique
    refermeture du disjoncteur associé à une fraction de réseau affectée d'un défaut, par un dispositif automatique après un intervalle de temps permettant la disparition d'un défaut fugitif
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    refermeture automatique
    séquence de manoeuvres par laquelle, à la suite d’une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEC 62271-100, ed. 2.0 (2008-04)]
    refermeture automatique (d'un appareil mécanique de connexion)
    séquence de manoeuvres par laquelle, à la suite d'une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEV number 441-16-10]

     
    Автоматическое повторное включение (АПВ), быстрое автоматическое обратное включение в работу высоковольтных линий электропередачи и электрооборудования высокого напряжения после их автоматического отключения; одно из наиболее эффективных средств противоаварийной автоматики. Повышает надёжность электроснабжения потребителей и восстанавливает нормальный режим работы электрической системы. Во многих случаях после быстрого отключения участка электрической системы, на котором возникло короткое замыкание в результате кратковременного нарушения изоляции или пробоя воздушного промежутка, при последующей подаче напряжения повторное короткое замыкание не возникает.   АПВ выполняется с помощью автоматических устройств, воздействующих на высоковольтные выключатели после их аварийного автоматического отключения от релейной защиты. Многие из этих автоматических устройств обеспечивают АПВ при самопроизвольном отключении выключателей, например при сильных сотрясениях почвы во время близких взрывов, землетрясениях и т. п. Эффективность АПВ тем выше, чем быстрее следует оно за аварийным отключением, т. е. чем меньше время перерыва питания потребителей. Это время зависит от длительности цикла АПВ. В электрических системах применяют однократное АПВ — с одним циклом, двукратное — при неуспешном первом цикле, и трёхкратное — с тремя последовательными циклами. Цикл АПВ — время от момента подачи сигнала на отключение до замыкания цепи главными контактами выключателя — состоит из времени отключения и включения выключателя и времени срабатывания устройства АПВ. Длительность бестоковой паузы, когда потребитель не получает электроэнергию, выбирается такой, чтобы успело произойти восстановление изоляции (деионизация среды) в месте короткого замыкания, привод выключателя после отключения был бы готов к повторному включению, а выключатель к моменту замыкания его главных контактов восстановил способность к отключению поврежденной цепи в случае неуспешного АПВ. Время деионизации зависит от среды, климатических условий и других факторов. Время восстановления отключающей способности выключателя определяется его конструкцией и количеством циклов АПВ., предшествовавших данному. Обычно длительность 1-го цикла не превышает 0,5—1,5 сек, 2-го — от 10 до 15 сек, 3-го — от 60 до 120 сек.

    Наиболее распространено однократное АПВ, обеспечивающее на воздушных линиях высокого напряжения (110 кв и выше) до 86 %, а на кабельных линиях (3—10 кв) — до 55 % успешных включений. Двукратное АПВ обеспечивает во втором цикле до 15 % успешных включений. Третий цикл увеличивает число успешных включений всего на 3—5 %. На линиях электропередачи высокого напряжения (от 110 до 500 кВ) применяется однофазовое АПВ; при этом выключатели должны иметь отдельные приводы на каждой фазе.

    Применение АПВ экономически выгодно, т. к. стоимость устройств АПВ и их эксплуатации несравнимо меньше ущерба из-за перерыва в подаче электроэнергии.
    [ БСЭ]

     

    НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ АПВ

    Опыт эксплуатации сетей высокого напряжения показал, что если поврежденную линию электропередачи быстро отключить, т. е. снять с нее напряжение, то в большинстве случаев повреждение ликвидируется. При этом электрическая дуга, возникавшая в месте короткого замыкания (КЗ), не успевает вызвать существенных разрушений оборудования, препятствующих обратному включению линии под напряжение.
    Самоустраняющиеся повреждения принято называть неустойчивыми. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывании гололеда, падения деревьев, задевания проводов движущимися механизмами.
    Данные о повреждаемости воздушных линий электропередачи (ВЛ) за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50—90 %.
    При ликвидации аварии оперативный персонал производит обычно опробование линии путем включения ее под напряжение, так как отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения носят неустойчивый характер. Эту операцию называют повторным включением.
    Если КЗ самоустранилось, то линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
    На ВЛ успешность повторного включения сильно зависит от номинального напряжения линий. На линиях ПО кВ и выше успешность повторного включения значительно выше, чем на ВЛ 6—35 кВ. Высокий процент успешных повторных включений в сетях высокого и сверхвысокого напряжения объясняется быстродействием релейной защиты (как правило, не более 0,1-0,15 с), большим сечением проводов и расстояний между ними, высокой механической прочностью опор. [Овчинников В. В., Автоматическое повторное включение. — М.:Энергоатомиздат, 1986.— 96 с: ил. — (Б-ка электромонтера; Вып. 587). Энергоатомиздат, 1986]

    АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ (АПВ)

    3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.

    Должно предусматриваться автоматическое повторное включение:

    1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;

    2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);

    3) трансформаторов (см. 3.3.26);

    4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).

    Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.

    Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.

    3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:

    1) отключении выключателя персоналом дистанционно или при помощи телеуправления;

    2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

    3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.

    Устройства АПВ должны быть выполнены так, чтобы была исключена возможностью многократного включения на КЗ при любой неисправности в схеме устройства.

    Устройства АПВ должны выполняться с автоматическим возвратом.

    3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.

    Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т. е. при наличии симметричного напряжения на линии).

    Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.

    3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.

    3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее - если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.

    В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.

    3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.

    Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.

    С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).

    3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.

    Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.

    При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии. С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).

    В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.

    3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.

    3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) должен предусматриваться один из следующих видов трехфазного АПВ (или их комбинаций):

    а) быстродействующее ТАПВ (БАПВ)

    б) несинхронное ТАПВ (НАПВ);

    в) ТАПВ с улавливанием синхронизма (ТАПВ УС).

    Кроме того, может предусматриваться однофазное АПВ (ОАПВ) в сочетании с различными видами ТАПВ, если выключатели оборудованы пофазным управлением и не нарушается устойчивость параллельной работы частей энергосистемы в цикле ОАПВ.

    Выбор видов АПВ производится, исходя из совокупности конкретных условий работы системы и оборудования с учетом указаний 3.3.11-3.3.15.

    3.3.11. Быстродействующее АПВ, или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов), рекомендуется предусматривать на линиях по 3.3.10 для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. БАПВ может применяться при наличии выключателей, допускающих БАПВ, если после включения обеспечивается сохранение синхронной параллельной работы систем и максимальный электромагнитный момент синхронных генераторов и компенсаторов меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины.

    Оценка максимального электромагнитного момента должна производиться для предельно возможного расхождения угла за время БАПВ. Соответственно запуск БАПВ должен производиться лишь при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию. БАПВ должно блокироваться при срабатывании резервных защит и блокироваться или задерживаться при работе УРОВ.

    Если для сохранения устойчивости энергосистемы при неуспешном БАПВ требуется большой объем воздействий от противоаварийной автоматики, применение БАПВ не рекомендуется.

    3.3.12. Несинхронное АПВ (НАПВ) может применяться на линиях по 3.3.10 (в основном 110-220 кВ), если:

    а) максимальный электромагнитный момент синхронных генераторов и компенсаторов, возникающий при несинхронном включении, меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины, при этом в качестве практических критериев оценки допустимости НАПВ принимаются расчетные начальные значения периодических составляющих токов статора при угле включения 180°;

    б) максимальный ток через трансформатор (автотрансформатор) при угле включения 180° меньше тока КЗ на его выводах при питании от шин бесконечной мощности;

    в) после АПВ обеспечивается достаточно быстрая ресинхронизация; если в результате несинхронного автоматического повторного включения возможно возникновение длительного асинхронного хода, должны применяться специальные мероприятия для его предотвращения или прекращения.

    При соблюдении этих условий НАПВ допускается применять также в режиме ремонта на параллельных линиях.

    При выполнении НАПВ необходимо принять меры по предотвращению излишнего срабатывания защиты. С этой целью рекомендуется, в частности, осуществлять включение выключателей при НАПВ в определенной последовательности, например выполнением АПВ с одной из сторон линии с контролем наличия напряжения на ней после успешного ТАПВ с противоположной стороны.

    3.3.13. АПВ с улавливанием синхронизма может применяться на линиях по 3.3.10 для включения линии при значительных (примерно до 4%) скольжениях и допустимом угле.

    Возможно также следующее выполнение АПВ. На конце линии, который должен включаться первым, производится ускоренное ТАПВ (с фиксацией срабатывания быстродействующей защиты, зона действия которой охватывает всю линию) без контроля напряжения на линии (УТАПВ БК) или ТАПВ с контролем отсутствия напряжения на линии (ТАПВ ОН), а на другом ее конце - ТАПВ с улавливанием синхронизма. Последнее производится при условии, что включение первого конца было успешным (это может быть определено, например, при помощи контроля наличия напряжения на линии).

    Для улавливания синхронизма могут применяться устройства, построенные по принципу синхронизатора с постоянным углом опережения.

    Устройства АПВ следует выполнять так, чтобы имелась возможность изменять очередность включения выключателей по концам линии.

    При выполнении устройства АПВ УС необходимо стремиться к обеспечению его действия при возможно большей разности частот. Максимальный допустимый угол включения при применении АПВ УС должен приниматься с учетом условий, указанных в 3.3.12. При применении устройства АПВ УС рекомендуется его использование для включения линии персоналом (полуавтоматическая синхронизация).

    3.3.14. На линиях, оборудованных трансформаторами напряжения, для контроля отсутствия напряжения (КОН) и контроля наличия напряжения (КНН) на линии при различных видах ТАПВ рекомендуется использовать органы, реагирующие на линейное (фазное) напряжение и на напряжения обратной и нулевой последовательностей. В некоторых случаях, например на линиях без шунтирующих реакторов, можно не использовать напряжение нулевой последовательности.

    3.3.15. Однофазное автоматическое повторное включение (ОАПВ) может применяться только в сетях с большим током замыкания на землю. ОАПВ без автоматического перевода линии на длительный неполнофазный режим при устойчивом повреждении фазы следует применять:

    а) на одиночных сильно нагруженных межсистемных или внутрисистемных линиях электропередачи;

    б) на сильно нагруженных межсистемных линиях 220 кВ и выше с двумя и более обходными связями при условии, что отключение одной из них может привести к нарушению динамической устойчивости энергосистемы;

    в) на межсистемных и внутрисистемных линиях разных классов напряжения, если трехфазное отключение линии высшего напряжения может привести к недопустимой перегрузке линий низшего напряжения с возможностью нарушения устойчивости энергосистемы;

    г) на линиях, связывающих с системой крупные блочные электростанции без значительной местной нагрузки;

    д) на линиях электропередачи, где осуществление ТАПВ сопряжено со значительным сбросом нагрузки вследствие понижения напряжения.

    Устройство ОАПВ должно выполняться так, чтобы при выводе его из работы или исчезновении питания автоматически осуществлялся перевод действия защит линии на отключение трех фаз помимо устройства.

    Выбор поврежденных фаз при КЗ на землю должен осуществляться при помощи избирательных органов, которые могут быть также использованы в качестве дополнительной быстродействующей защиты линии в цикле ОАПВ, при ТАПВ, БАПВ и одностороннем включении линии оперативным персоналом.

    Выдержка временем ОАПВ должна отстраиваться от времени погасания дуги и деионизации среды в месте однофазного КЗ в неполнофазном режиме с учетом возможности неодновременного срабатывания защиты по концам линии, а также каскадного действия избирательных органов.

    3.3.16. На линиях по 3.3.15 ОАПВ должно применяться в сочетании с различными видами ТАПВ. При этом должна быть предусмотрена возможность запрета ТАПВ во всех случаях ОАПВ или только при неуспешном ОАПВ. В зависимости от конкретных условий допускается осуществление ТАПВ после неуспешного ОАПВ. В этих случаях предусматривается действие ТАПВ сначала на одном конце линии с контролем отсутствия напряжения на линии и с увеличенной выдержкой времени.

    3.3.17. На одиночных линиях с двусторонним питанием, связывающих систему с электростанцией небольшой мощности, могут применяться ТАПВ с автоматической самосинхронизацией (АПВС) гидрогенераторов для гидроэлектростанций и ТАПВ в сочетании с делительными устройствами - для гидро- и теплоэлектростанций.

    3.3.18. На линиях с двусторонним питанием при наличии нескольких обходных связей следует применять:

    1) при наличии двух связей, а также при наличии трех связей, если вероятно одновременное длительное отключение двух из этих связей (например, двухцепной линии):

    несинхронное АПВ (в основном для линий 110-220 кВ и при соблюдении условий, указанных в 3.3.12, но для случая отключения всех связей);

    АПВ с проверкой синхронизма (при невозможности выполнения несинхронного АПВ по причинам, указанным в 3.3.12, но для случая отключения всех связей).

    Для ответственных линий при наличии двух связей, а также при наличии трех связей, две из которых - двухцепная линия, при невозможности применения НАПВ по причинам, указанным в 3.3.12, разрешается применять устройства ОАПВ, БАПВ или АПВ УС (см. 3.3.11, 3.3.13, 3.3.15). При этом устройства ОАПВ и БАПВ следует дополнять устройством АПВ с проверкой синхронизма;

    2) при наличии четырех и более связей, а также при наличии трех связей, если в последнем случае одновременное длительное отключение двух из этих связей маловероятно (например, если все линии одноцепные), - АПВ без проверки синхронизма.

    3.3.19. Устройства АПВ с проверкой синхронизма следует выполнять на одном конце линии с контролем отсутствия напряжения на линии и с контролем наличия синхронизма, на другом конце - только с контролем наличия синхронизма. Схемы устройства АПВ с проверкой синхронизма линии должны выполняться одинаковыми на обоих концах с учетом возможности изменения очередности включения выключателей линии при АПВ.

    Рекомендуется использовать устройство АПВ с проверкой синхронизма для проверки синхронизма соединяемых систем при включении линии персоналом.

    3.3.20. Допускается совместное применение нескольких видов трехфазного АПВ на линии, например БАПВ и ТАПВ с проверкой синхронизма. Допускается также использовать различные виды устройств АПВ на разных концах линии, например УТАПВ БК (см. 3.3.13) на одном конце линии и ТАПВ с контролем наличия напряжения и синхронизма на другом.

    3.3.21. Допускается сочетание ТАПВ с неселективными быстродействующими защитами для исправления неселективного действия последних. В сетях, состоящих из ряда последовательно включенных линий, при применении для них неселективных быстродействующих защит для исправления их действия рекомендуется применять поочередное АПВ; могут также применяться устройства АПВ с ускорением защиты до АПВ или с кратностью действия (не более трех), возрастающей по направлению к источнику питания.

    3.3.22. При применении трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых устанавливаются короткозамыкатели и отделители, для отключения отделителя в бестоковую паузу время действия устройства АПВ должно быть отстроено от суммарного времени включения короткозамыкателя и отключения отделителя. При применении трехфазного АПВ двукратного действия (см. 3.3.6) время действия АПВ в первом цикле по указанному условию не должно увеличиваться, если отключение отделителя предусматривается в бестоковую паузу второго цикла АПВ.

    Для линий, на которые вместо выключателей устанавливаются отделители, отключение отделителей в случае неуспешного АПВ в первом цикле должно производиться в бестоковую паузу второго цикла АПВ.

    3.3.23. Если в результате действия АПВ возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если такое включение для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует предусматривать автоматическое отключение этих синхронных машин при исчезновении питания или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АПВ.

    Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие излишние срабатывания АЧР при действии АПВ.

    3.3.24. АПВ шин электростанций и подстанций при наличии специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по одному из двух вариантов:

    1) автоматическим опробованием (постановка шин под напряжение выключателем от АПВ одного из питающих элементов);

    2) автоматической сборкой схемы; при этом первым от устройства АПВ включается один из питающих элементов (например, линия, трансформатор), при успешном включении этого элемента производится последующее, возможно более полное автоматическое восстановление схемы доаварийного режима путем включения других элементов. АПВ шин по этому варианту рекомендуется применять в первую очередь для подстанций без постоянного дежурства персонала.

    При выполнении АПВ шин должны применяться меры, исключающие несинхронное включение (если оно является недопустимым).

    Должна обеспечиваться достаточная чувствительность защиты шин на случай неуспешного АПВ.

    3.3.25. На двухтрансформаторных понижающих подстанциях при раздельной работе трансформаторов, как правило, должны предусматриваться устройства АПВ шин среднего и низшего напряжений в сочетании с устройствами АВР; при внутренних повреждениях трансформаторов должно действовать АВР, при прочих повреждениях - АПВ (см. 3.3.42).

    Допускается для двухтрансформаторной подстанции, в нормальном режиме которой предусматривается параллельная работа трансформаторов на шинах данного напряжения, устанавливать дополнительно к устройству АПВ устройство АВР, предназначенное для режима, когда один из трансформаторов выведен в резерв.

    3.3.26. Устройствами АПВ должны быть оборудованы все одиночные понижающие трансформаторы мощностью более 1 MB·А на подстанциях энергосистем, имеющие выключатель и максимальную токовую защиту с питающей стороны, когда отключение трансформатора приводит к обесточению электроустановок потребителей. Допускается в отдельных случаях действие АПВ и при отключении трансформатора защитой от внутренних повреждений.

    3.3.27. При неуспешном АПВ включаемого первым выключателем элемента, присоединенного двумя или более выключателями, АПВ остальных выключателей этого элемента, как правило, должно запрещаться.

    3.3.28. При наличии на подстанции или электростанции выключателей с электромагнитным приводом, если от устройства АПВ могут быть одновременно включены два или более выключателей, для обеспечения необходимого уровня напряжения аккумуляторной батареи при включении и для снижения сечения кабелей цепей питания электромагнитов включения следует, как правило, выполнять АПВ так, чтобы одновременное включение нескольких выключателей было исключено (например, применением на присоединениях АПВ с различными выдержками времени).

    Допускается в отдельных случаях (преимущественно при напряжении 110 кВ и большом числе присоединений, оборудованных АПВ) одновременное включение от АПВ двух выключателей.

    3.3.29. Действие устройств АПВ должно фиксироваться указательными реле, встроенными в реле указателями срабатывания, счетчиками числа срабатываний или другими устройствами аналогичного назначения.
    [ ПУЭ]

    Тематики

    Обобщающие термины

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Kurzunterbrechung

См. также в других словарях:

  • подстанции по концам ЛЭП — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN line termination …   Справочник технического переводчика

  • принципиальная электрическая схема электростанции (подстанции) — 3.21 принципиальная электрическая схема электростанции (подстанции): Схема, отображающая состав оборудования и его связи, дающая представление о принципе работы электрической части электростанции (подстанции). Источник …   Словарь-справочник терминов нормативно-технической документации

  • широковещательное объектно-ориентированное сообщение о событии на подстанции — GOOSE сообщение [Интент] широковещательное объектно ориентированное сообщение о событии на подстанции Широковещательный высокоскоростной внеочередной отчет, содержащий статус каждого из входов, устройств пуска, элементов выхода и реле, реальных и …   Справочник технического переводчика

  • жизненный цикл ИЭУ [системы автоматизации подстанции] — Стадии создания и работы интеллектуального электронного устройства [системы автоматизации подстанции] с учетом всех фаз. Примечание. Применительно к системам автоматизации подстанции понятие жизненный цикл имеет два независимых значения:… …   Справочник технического переводчика

  • вторичные цепи электростанции (подстанции) — 3.6 вторичные цепи электростанции (подстанции): Совокупность кабелей и проводов, соединяющих устройства управления, сигнализации, автоматики, защиты и измерений электростанции (подстанции). Источник …   Словарь-справочник терминов нормативно-технической документации

  • щит управления электростанции (подстанции) — 3.3.54 щит управления электростанции (подстанции) : Совокупность пультов и панелей с устройствами управления, контроля и защиты электростанции (подстанции), расположенных в одном помещении. [ title= Категорийность электроприемников промышленных… …   Словарь-справочник терминов нормативно-технической документации

  • ячейка (электрической) подстанции — 35 ячейка (электрической) подстанции [распределительного устройства] Часть (электрической) подстанции [распределительного устройства], содержащая всю или часть коммутационной и/или иной аппаратуры одного присоединения 605 02 09 de Feld en bay (of …   Словарь-справочник терминов нормативно-технической документации

  • приемочные испытания системы автоматизации подстанции на площадке заказчика — Испытания с целью подтверждения всех данных, точек управления и надлежащих функциональных характеристик внутри самой системы автоматизации подстанции и между системой автоматизации подстанции и ее эксплуатационной средой на всем установленном… …   Справочник технического переводчика

  • проверка отрицательной реакции устройства [системы автоматизации подстанции] — Проверка правильной реакции устройства [системы автоматизации подстанции] на информацию и сервисы, направленные на проверяемое устройство [систему автоматизации подстанции], не реализованные в проверяемом устройстве [системе автоматизации… …   Справочник технического переводчика

  • вторичная система электростанции (подстанции) — 3.5 вторичная система электростанции (подстанции): Совокупность устройств управления, сигнализации, автоматики, защиты и измерений электростанции (подстанции), связанных между собой вторичными цепями. Источник …   Словарь-справочник терминов нормативно-технической документации

  • главная электрическая схема электростанции (подстанции) — 3.7 главная электрическая схема электростанции (подстанции): Схема соединений основного оборудования электрической части электростанции (подстанции) с указанием типов и основных электрических параметров оборудования. Источник …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»